Medical diagnosis using NIR and THz tissue imaging and machine learning methods /Y. V. Kistenev, V. V. Tuchin, A. V. Borisov [et al.]

Электронный ресурс
Другой Автор
Tuchin, Valery V.
Borisov, Alexey V. 1980-
Lazareva, Ekaterina N.
Nikolaev, Viktor V.
Tuchina, Daria K.
Vrazhnov, Denis A.
Yanina, Irina Yu.
Kistenev, Yury V.
Источник
Proceedings of SPIE 2019 Vol. 10877 : Dynamics and fluctuations in biomedical photonics XVI. P. 108770J-1-108770J-11
Аннотация
The problem of extracting useful information for medical diagnosis from 2D and 3D optical imaging experimental data is of great importance. We are discussing challenges and perspectives of medical diagnosis using machine learning analysis of NIR and THz tissue imaging. The peculiarities of tissue optical clearing for tissue imaging in NIR and THz spectral ranges aiming the improvement of content data analysis, methods of extracting of informative features from experimental data and creating of prognostic models for medical diagnosis using machine learning methods are discussed.
Всего оценка: 0
Нет записей для отображения.
 
 
 
02128nab a2200385 c 4500
001
 
 
vtls000672177
003
 
 
RU-ToGU
005
 
 
20191219180200.0
007
 
 
cr |
008
 
 
191216|2019    xxu     s         a eng d
024
7
$a 10.1117/12.2508166 $2 doi
035
$a to000672177
039
9
$a 201912191802 $b cat34 $c 201912161627 $d VLOAD $y 201912161616 $z VLOAD
040
$a RU-ToGU $b rus $c RU-ToGU
245
1
0
$a Medical diagnosis using NIR and THz tissue imaging and machine learning methods $c Y. V. Kistenev, V. V. Tuchin, A. V. Borisov [et al.]
504
$a Библиогр.: 74 назв.
520
3
$a The problem of extracting useful information for medical diagnosis from 2D and 3D optical imaging experimental data is of great importance. We are discussing challenges and perspectives of medical diagnosis using machine learning analysis of NIR and THz tissue imaging. The peculiarities of tissue optical clearing for tissue imaging in NIR and THz spectral ranges aiming the improvement of content data analysis, methods of extracting of informative features from experimental data and creating of prognostic models for medical diagnosis using machine learning methods are discussed.
653
$a медицинская диагностика
653
$a ТГц визуализация
653
$a биологические ткани
655
4
$a статьи в журналах
700
1
$a Tuchin, Valery V.
700
1
$a Borisov, Alexey V. $d 1980-
700
1
$a Lazareva, Ekaterina N.
700
1
$a Nikolaev, Viktor V.
700
1
$a Tuchina, Daria K.
700
1
$a Vrazhnov, Denis A.
700
1
$a Yanina, Irina Yu.
700
1
$a Kistenev, Yury V.
773
0
$t Proceedings of SPIE $d 2019 $g Vol. 10877 : Dynamics and fluctuations in biomedical photonics XVI. P. 108770J-1-108770J-11 $x 0277-786X
852
4
$a RU-ToGU
856
4
$u http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000672177
908
$a статья
999
$a VIRTUA               
999
$a VTLSSORT0070*0080*0240*0350*0400*2450*5040*5200*6530*6531*6532*6550*7007*7000*7001*7002*7003*7004*7005*7006*7730*8520*8560*9080*9992
Нет комментариев.
Предмет
статьи в журналах
Резюме
The problem of extracting useful information for medical diagnosis from 2D and 3D optical imaging experimental data is of great importance. We are discussing challenges and perspectives of medical diagnosis using machine learning analysis of NIR and THz tissue imaging. The peculiarities of tissue optical clearing for tissue imaging in NIR and THz spectral ranges aiming the improvement of content data analysis, methods of extracting of informative features from experimental data and creating of prognostic models for medical diagnosis using machine learning methods are discussed.