Multiple Classifier Systems [electronic resource] : : 11th International Workshop, MCS 2013, Nanjing, China, May 15-17, 2013. Proceedings / /edited by Zhi-Hua Zhou, Fabio Roli, Josef Kittler.

Zhou, Zhi-Hua.
Публикация
Berlin, Heidelberg : : Springer Berlin Heidelberg : : Imprint: Springer, , 2013.
Физическое описание
XI, 400 p. 106 illus.: online resource.
Электронный ресурс
Другой Автор
Roli, Fabio. editor.
Kittler, Josef. editor.
Источник
Springer eBooks
Содержание
Multiple classifier systems and ensemble methods -- Pattern recognition -- Machine learning -- Neural network -- Data mining -- Statistics.
Серия
Lecture Notes in Computer Science, 0302-9743 ; 7872
Аннотация
This book constitutes the refereed proceedings of the 11th International Workshop on Multiple Classifier Systems, MCS 2013, held in Nanjing, China, in May 2013. The 34 revised papers presented together with two invited papers were carefully reviewed and selected from 59 submissions. The papers address issues in multiple classifier systems and ensemble methods, including pattern recognition, machine learning, neural network, data mining and statistics.
Всего оценка: 0
Нет записей для отображения.
 
 
 
02590nam a22005655i 4500
001
 
 
vtls000484921
003
 
 
RU-ToGU
005
 
 
20140715195000.0
007
 
 
cr nn 008mamaa
008
 
 
140715s2013    gw |    s    |||| 0|eng d
020
$a 9783642380679 $9 978-3-642-38067-9
024
7
$a 10.1007/978-3-642-38067-9 $2 doi
035
$a to000484921
039
9
$y 201407151950 $z staff
040
$a Springer $c Springer $d RU-ToGU
050
4
$a QA76.9.D343
072
7
$a UNF $2 bicssc
072
7
$a UYQE $2 bicssc
072
7
$a COM021030 $2 bisacsh
082
0
4
$a 006.312 $2 23
100
1
$a Zhou, Zhi-Hua. $e editor.
245
1
0
$a Multiple Classifier Systems $h [electronic resource] : $b 11th International Workshop, MCS 2013, Nanjing, China, May 15-17, 2013. Proceedings / $c edited by Zhi-Hua Zhou, Fabio Roli, Josef Kittler.
260
$a Berlin, Heidelberg : $b Springer Berlin Heidelberg : $b Imprint: Springer, $c 2013.
300
$a XI, 400 p. 106 illus. $b online resource.
336
$a text $b txt $2 rdacontent
337
$a computer $b c $2 rdamedia
338
$a online resource $b cr $2 rdacarrier
490
1
$a Lecture Notes in Computer Science, $x 0302-9743 ; $v 7872
505
0
$a Multiple classifier systems and ensemble methods -- Pattern recognition -- Machine learning -- Neural network -- Data mining -- Statistics.
520
$a This book constitutes the refereed proceedings of the 11th International Workshop on Multiple Classifier Systems, MCS 2013, held in Nanjing, China, in May 2013. The 34 revised papers presented together with two invited papers were carefully reviewed and selected from 59 submissions. The papers address issues in multiple classifier systems and ensemble methods, including pattern recognition, machine learning, neural network, data mining and statistics.
650
0
$a Computer Science.
650
0
$a Data mining.
650
0
$a Information storage and retrieval systems.
650
0
$a Computer vision.
650
0
$a Optical pattern recognition.
650
1
4
$a Computer Science.
650
2
4
$a Data Mining and Knowledge Discovery.
650
2
4
$a Pattern Recognition.
650
2
4
$a Image Processing and Computer Vision.
650
2
4
$a Information Storage and Retrieval.
700
1
$a Roli, Fabio. $e editor.
700
1
$a Kittler, Josef. $e editor.
710
2
$a SpringerLink (Online service)
773
0
$t Springer eBooks
830
0
$a Lecture Notes in Computer Science,
856
4
0
$u http://dx.doi.org/10.1007/978-3-642-38067-9
912
$a ZDB-2-SCS
912
$a ZDB-2-LNC
950
$a Computer Science (Springer-11645)
999
$a VIRTUA               
Нет комментариев.
Предмет
Computer Science.
Data mining.
Information storage and retrieval systems.
Computer vision.
Optical pattern recognition.
Computer Science.
Data Mining and Knowledge Discovery.
Pattern Recognition.
Image Processing and Computer Vision.
Information Storage and Retrieval.
Резюме
This book constitutes the refereed proceedings of the 11th International Workshop on Multiple Classifier Systems, MCS 2013, held in Nanjing, China, in May 2013. The 34 revised papers presented together with two invited papers were carefully reviewed and selected from 59 submissions. The papers address issues in multiple classifier systems and ensemble methods, including pattern recognition, machine learning, neural network, data mining and statistics.